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TRANSIENT SONAR SIGNAL CLASSIFICATION USING

HIDDEN MARKOV MODEL AND NEURAL NET

Amlan Kundu, George C. Chen, and Charles E. Persons

Naval Command, Control and Ocean Surveillance Center
RDT&E Division, Code 732

San Diego, CA 92152-5001, U.S.A.

ABSTRACT wavelet transform can properly represent such sig-
In ocean surveillance, a number of different types of nals. In particular, Daubechies type wavelets are con-
transient signals are observed. These sonar signals sidered in our work. These wavelets are finite
are waveforms in one dimension (l-D), and often duration filters and quite easy to implement [2]. It is
display an evolutionary pattern over the time scale. our viewpoint that these three very different signal
The hidden Markov model (1MM) is well-suited to representations for feature extraction would reveal
classification of such 1-D signals. Following this in- some of the latent characteristics of the signal for bet-
tuition, the application of HMM to sonar transient ter classification.
classification is proposed and discussed in this paper. Finally, we have studied the same set of features
Toward this goal, three different feature vectors with a multi-layer perceptron neural net (MLP-NN)
based on autoregressive (AR) model, Fourier power classifier with the express objective of finding out the

* spectrum, and wavelet transforms are considered in complementary nature, if any, of these two classifiers
our work. The neural net (NN) classifier has been - MLP-NN and HMM. We show in the current paper
successfully used for sonar transient classification, that a combined classifier using HMMs and MLP-
The same set of features as mentioned above is then NNs is likely to outperform the individual classifiers.
used with an NN classifier. Some concrete experi- Figure 1 gives the block diagram of our scheme.
mental results using "DARPA standard data set r'
with HMM and NN classification schemes are pre- 2. FEATURE REPRESENTATION
sented. Finally, a combined NN/HMM classifier is We have three different feature representation
proposed, and its performance is evaluated with re- schemes: one based on an autoregressive model, one
spect to individual classifiers. based on Fourier power spectrum, and the other

based on the wavelet transform. The AR coefficients
1. INTRODUCTION are computed by the Burg algorithm. Due to scaling

The transient sonar signal classification problem problem, the gain coefficient is not used.
is deemed difficult because of the short duration of
the transients, wide intra-class variations and the ef- 2.1. Fourier Power Spectrum
fects of ambient ocean noise. The most common type From the given data segment, its FF1" is comput-
of classifier used for this task is the neural net [1] ed. Before FFT computation, each data segment is
though other classifiers have been studied [1, 4-5]. windowed with a Kaiser-Bessel window function.
Also, it has been found that no single feature extrac- The magnitude square of the FF1' coefficients gives
tion technique can adequately capture all the feature the Fourier power spectrum of the data.
information for all the ocean acoustic transients of in-
terest. With this view in mind, we have experimented 2.2. Wavelet Transform
with the HMM classifier and three different feature The Daubechies wavelets are a class of discrete
vectors in this paper. The feature vector based on an orthonormal dyadic wavelets. An M order
AR model is a natural candidate with the HMM clas- Daubechies wavelet [21 is given by M coefficients
sifler. As the Fourier power spectrum is widely used denoted by Cj - 0, ..., M- 1. Then, the convolution
by the NN community for their research, these fea- of the signal with a FIR filter of length M
i res are also considered [1]. Finally, wavelet-trans- (C., j- 0, .... M- 1) gives the smooth component On
form-based features are considered. It is well-known the other hand, the convolution of the signal with a
that sonar transients are nonstationary signals. The FIR filter of length M and coefficients
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(-1)-'CM - I1 .j - 0 .... M- i, gives the detail compo- In creating the model for each class, we should
nent. After one pass of this algorithm, the smooth guarantee that the parameters we obtain are the opti-
and the detail components are decimated by 2. The mum for a given set of training samples. Since our
smooth components are then transformed again, and decision rule is the state-optimized likelihood func-
the procedure continues until we have only two tion, it requires that the estimated parameter j be
smooth components left. The output, at this stage, is such that p (0, Q-1 1) is maximized over all possible
the wavelet transform of the original signal. The co- . for the training set. It is shown in [61 that the seg-
efficients in Daubechies wavelets are obtained from mental K-means algorithm converges to the state-op-
orthonormality conditions, and "smoothness con- timized likelihood function for a wide range of
straints". For an M order wavelet, these conditions observation density functions, including the Gauss-
and constraints lead to exactly M linear equations. ian density we have assumed.
Thus, Mcoefficients are uniquely determined [2]. In our works, a fully connected HMM topology

2.3. Feature Selection is used. For the dataset used in our experiment, the
fully connected HMM topology performs consistent-

The feature representation schemes transform the ly better than the left-to-right HMM topology. How-
original signal into feature space. Since some feo- ever, there are sonar signals where the utility of left-
tures may be more useful than others, only the impor- to-right HMM topology has been demonstrated [41.
tant features should be selected for a compact
representation of the signal for classification purpose. 3.2. Multi-Layer Perceptron NN Classifier
In our scheme, the signal is divided into a number of Multi-layer perceptrons (MLP) are feed-forward
overlapping segments. All the AR coefficients are nets with one or more layers of nodes between the in-
taken as the feature vector since relatively few AR put and output layers. The lowest layer is the input
coefficients are needed to represent a segment. For layer, which does not have any processing capability.
FFT power spectrum and the wavelet transform, the The highest layer is the output layer and any layer
spectral and the transform coefficients with relatively between the input layer and output layer is called the
higher magnitude are selected as features. hidden layer. It is the hidden layer that provides the

MLP-NN classifier the ability to create highly non-
3. CLASSIFIER DESIGN linear decision surfaces for better discriminative abil-

In our work, we have used two classifiers: HMM ity.
and multi-layer perceptron NN. Each signal template, Generally, the multi-layer perceptrons are trained
i.e., exemplar, is divided into a sequence of partially with the error back-propagation (EBP) algorithm [71
overlapping segments. Each segment is then repre- which is an iterative gradient algorithm designed to
sented by one feature vector. The sequence of feature minimize the mean square error (MSE) between the
vectors, henceforth denoted as 0, is used as one desired output yk and the actual output y.. Some-
training/testing observation sequence for the HMM. times, a momentum term is also included in the train-

3.1. HMM Classifier ing procedure. In our scheme, there are 21 thirty-
dimensional vectors in the sequence. These 630 fen-

To solve our signal classification problem, we tures are used as training features for the NN. The
create one HMM for each class. The observation NN is then designed with 630 input nodes, one hid-
density in each state of the HMM is assumed to be den layer with 20 nodes, and trained using the back
multi-dimensional Gaussian. For a classifier of P propagation algorithm and sigmoidal nonlinearity.
classes, we denote the P models by X, p - 1, 2 ... , P.
When a signal 0 of unknown class is given, we cal- 4. EXPERIMENTAL RESULTS
culate

P" - arg max p (0, Q*"I A) 4.1. Signal Description
P We have used the DARPA standard data set I for

and classify the signal as belonging to class p*. Here, our experiments. This data set provides seven classes
(" represents the optimal state sequence correspond- of signals to test our algorithm. A typical example,
ing to 0 [3]. For a given x, an efficient method to one from each class, is shown in Fig. 2. We denote
find p(O, Q Ix) is the well known-Viterbi algorithm these signal classes as:
[3]. Class A: Broadband 15-misc. pulse.

Class B: Two 4-misc. pulses, 27-misc. separation.
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Class C: 3-kHz tonal, 10-misc. duration. Based on the detailed analysis of our experimen-

Class D: 3-kHz tonal. 100-misc. duration. tal results, the following conclusions are in order:

Class E: 150-Hz tonal, 1-sec. duration. (1) To a certain extent, the wavelet based features

Class F: 250-Hz tonal, 8-sec. duration. complement the FFr based features.
(2) To a certain extent, the HMM classifier com-

Class N: Ocean ambient noise. plements the NN classifier.
We have created 45 templates, i.e., exemplars, (3) The combined classifier has the best result.

for each class, of which 23 are used as training tem- Only a simple combination is described in the paper.
plates and 22 as test templates. Each signal template Other possible combinations of HMM/NN classifiers
contains 1024 data points. The sampling rate for the should be explored. A hybrid HMM/NN classifier
signal is 24.576 Hz. For this sampling rate, 1024 data that combines the time normalization ability of the
points are enough to capture the essential characteris- HMM and the superlative discriminative ability of
tics of all the transient types including the Class B the NN is currently being investigated.
type signal. which has the most time spread. This
1024 point signal template is divided into 21 frames, Acknowledgment: The authors would like to thank
i.e.. segments, of 256 data points with an overlap of Dr. Barbara Yoon of DARPA, Dr. Thomas McKenna
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Figure 1. Block diagram representation of classification scheme.1
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Figure 2. An example of different classes of signals used in our experiment.

WaeWavelet Waveletm
F (Daubechies 4) (Dauehc 20J)

I1MM 89.6% 91.5% 90.9%-

NN 90.9% 90.9% 935%-

C*mnbined - *'98.6%
(FI'eshold--4)

Combined -- -96.7%

(Threshold=3)

Tablel. Recognition performance of classifier/feature vector combination; * indicates that
the "non-classified" templates are not included in computing the recognition performance.
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